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Symbolic dynamics of the hyperbolic potential

Wei-Mou Zheng
Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China
(Received 15 May 1997

An appropriate Poincarsurface of section without referring to bounce events is introduced forye
potential. By means of the map on the annulus and the lifted space the symbolic dynamics of the system is
constructed. Symmetries are used to reduce the number of syrBbi63-651X%97)13810-1

PACS numbd(s): 05.45+b, 03.20+i

By the hyperbolic potential system we mean the Hamil-contour, the Poincarenap can be obtained. On the corre-
tonian[1] sponding circle contour, the map represents a map on the
annulus. Let us define the fundamental dom@Bb) of the
annulus to be the area s£[0,8) andv e[ —1,1]. For a map
on the annulus it is useful to consider its lfi—9]. In the
lifted space on which the lift map is defined the image of the
which appears in the long-wavelength limit of &JYang- FD is partly sketched in Fig. 2 where the FD is the rectangle
Mills theory [2]. After regularization by conversion to the consisting of the leftmost eight strips marked with the num-
semiparabolic coordinat¢8] a hydrogen atom in a magnetic bers 0 to 7. In the figure we draw only the images of strips 1
field or a collinear helium atom can be described by similarand 2. Two zones marked with 1 and f strip 1 are
Hamiltoniang4,5]. Being invariant under the grou®,, , the  mapped to zone 1 of strig-3 and zone 1 of strip +2,
Hamiltonian(1) possesses rotational and reflectional symmerespectively. The notation representing the image of strip 2 is
tries, and is similar to the symmetric four disk billiard. The analogous. The rotational symmetry of the Hamilton{an
three-letter alphabd0,1,2 coding for billiard orbits is well  corresponds to the translational symmetry in the lifted space.
known[1,4]. Based on bounce events in the symmetric fourFor example, the image of strip O is in strips 6 and 7, and can
disk billiard, code 2 is assigned to a diagonal boufie, a  be obtained from the image of strip(ih the strips+0 and
scattering from a disk to the disk diagonal th tode 1 to a +1) by shifting to the left by two strips.
nondiagonal bounce of an equal sense with its last non- For the full FD, the rotation number of orbits is between 0
diagonal bounce, and code 0 to a nondiagonal bounce of amd 2. Taking the rotational symmetry into account, we may
opposite sense. If a correspondence between orbits of a bitonsider only the reduced domaRD) consisting of strips 1
liard and those of the hyperbolic potential exists, we mayand 2. When the RD is regarded as the annulus, from Fig. 2
code orbits of the hyperbolic potential according to bouncesthe integral part of rotation numbers is 3, 4, or 5 for zone 2,
However, bounces are not always well defined for a soft
potential likex?y?, and no Poincarsurface of section de-
fined according to bounces is available. In this paper we shal
introduce a Poincarsection appropriate for the hyperbolic y
potential and describe its symbolic dynamics. A

The rotational symmetry can be easily described for a
map on the annulus. Consider the contour shown in Fig. 1
which starts at the positive infinity of the axis and goes
along bothx andy axes in the counterclockwise direction.
We may convert the contour into a circle with a circumfer-
ence of 8. Each straight segment of the contour then corre
sponds to a nonoverlapping arc of length 1 on the circle. The
specific form of the transformation from the contour to a
circle is not essential to our discussion. The transformatior 0
we use is defined as follows. Denote ®yhe arc length on
the circle measured from the poirg=0) corresponding to
the point &,y)=(+2,0") on the contour. The transforma-
tions for the eight straight segments of the contour in the
counterclockwise order are 1/¢x), 2-1/(1+Yy),
2+1/(1+y), 4-1/(1—-x), 4+1/(1-x), 6-—1/(1-vY),
6+1/(1-y), and 8-1/(1+Xx).

Imagining that thex andy axes would be of a finite
width, we may define the inside of the contour. By recording
the nonvanishing coordinate and the tangent companeft
the momentum at crossing points where an orbit enters the FIG. 1. Contour for the Poincasurface of section.
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FIG. 2. Sketch showing the image of the fundamental domain.

the joint zone 1 and 2 or zone 1, respectively. The RD is *C, and «C,, and two other lines separating different rota-
correspondingly divided into three regions according to theion numbers, being the preimage &g or *D,, are marked
rotation number. In the RD, tangencies between stable anbly B, and *B,. By means of this partition we may code an
unstable manifolds can be easily seen. Among them, therbit with a doubly infinite sequence

prominent ones are in zones 1 and 2. At a given point the

stable and unstable directions or tangent directions of mani- ©++S_1°SpS1- -+,

folds can be determined with the procedure suggested by

Greeng[10], and then tangent points found. Two lines con-Where ¢ indicates the present.

necting such tangent points, which go approximately along The ordering is essential to the construction of symbolic
nearby stable manifolds, give a further partition of the RD.dynamics. We may accept the natural order of the lifted
The final partition of the RD into five regions is sketched in space to write

Fig. 3 where these regions are marked hy,*R;, *R1, *R,,

and <L,. In the figure the two boundaries of the RD are *Lo<*Ro<*Ry<*R;<-L,. @)

marked with D, and D,, the two lines of tangencies by From the image of the RD shown in Fig. 2 we see an oppo-

site arrangement of the image zones in the lifted space. A

more precise description of ordering is given by the ordering

oD, oD, of stable manifold foliations on a transversal unstable folia-

tion. It is numerically verified that under the forward map the
ordering is reversed in the regionRy, *R;, and R,, but
preserved in by and <1,. We may define the parity of a
finite string by the oddness of the total number of the letters
Ro, Ri, and R, contained in the string. Any odd leading
string will then reverse the orderin@).

The image of the partition shown in Fig. 3 gives the par-
tition according to preimages. The study of this partition un-
der the backward map provides the information about the
ordering of backward sequences. Similarly, we have

L0'<RO.<R1'<R2'<L2', (3)

and an odd leading string also reverses this ordering. Here
the ordering rules for forward and for backward sequences
coincide. However, generally they are different. The stadium
billiard is an examplg9].

Based on the ordering rules, metric representations for
both forward and backward sequences may be introduced to
construct the symbolic plangl1]. Every forward or back-
ward sequence then corresponds to a number between 0 and
1. An orbit point corresponds to a poin&(8) in the unit
square, wherex and 8 are associated with the forward and

FIG. 3. Sketch showing the partition of the reduced domain. Webackward sequences, respectively. In the symbolic plane for-
have used an equivalent range 1.0,1.0) fors instead 011.0,3.0).  bidden sequences are pruned by the so-called primary prun-
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FIG. 4. Symbolic plane of the reduced domain. Approximately  FIG. 6. Symbolic plane of the minimal domain. Approximately
6 000 real orbit points are drawn. 6 000 real orbit points are drawn.

ing front which consists of the points in the symbolic planecontrary, the image "10of strip 1 is in strip 2. However, the
representing all the points on the partition lind3,s *D,,  rotation can put the image back into strip 1. So, using the
*Cy, and <C,. We show the symbolic plane of théy? po-  reflectional symmetry, we may focus only on strip 1, which
tential in Fig. 4 where 6 000 points of several real orbits aremay be regarded as the minimal dom@mD). In this way
drawn. The corresponding primary pruning front is shown inthe five-letter symbolic dynamics is reduced to the three-
Fig. 5. letter one, and ther rotation changes the parity &;. More

So far we have not considered the reflectional symmetryspecifically speaking, we have the following ordering for the
In fact, the second and fourth quadrants in the symboligninimal domain:
plane are forbidden by the symmetry. In the lifted space this
symmetry corresponds to the invariance of the RD under a Lg<*Rp<*R;, Lg*<Rg*<Rye, 4
rotation around the centdor the reflection with respect to
the centex. From Fig. 2 it is seen that the image of zone 1 ofand onlyR, in a leading string reverses the ordering. The
strip 1 is in strip-+3, hence still in 1 after wrapping. On the symbolic plane of the MD is shown in Fig. 6 where 6 000
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FIG. 5. Primary pruning front of the reduced domain. It forms  FIG. 7. Primary pruning front of the minimal domain. It forms
the border of the region within which orbit points are restricted tothe border of the region within which orbit points are restricted to
fall. fall.
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points of several real orbits are drawn. The correspondingnay be distiguished in our code since the first orbit bgs
primary pruning front is shown in Fig. 7 where the pruning andL, instead ofR, andR,, respectively.
front of «D, is roughly diagonal, while that ofG is almost In the above we have given a natural way to construct
vertical. The latter encloses a forbidden zone near the top iBymbolic dynamics for th&?y? potential. Our choice of the
the symbolic plane, which is responsible for many interestingrgincare section avoids any ambiguity in identifying
bifurcations, e.g., the one mentioned in Rf] associated pounces. A lift of the phase space helps us to understand the
with the orbits (210j and (1000 in their codes[or  gynamics. Tangencies between stable and unstable manifold
(LoR7)™ and RoR;)”™ in our coded Finally, we give ex-  fgjiations play an important role in the construction of sym-
amples of different codings for some orbits shown inpgjic dynamics. Our discussions are specifically made only
Ref. [1]: for the x?y? potential, but the arguments may be applied to
other systems such as thelisk pinballs, a hydrogen atom in

10,1,2-code five-letter c6ode . three-lettesr code 5 magnetic field12], a collinear helium atom, and the an-
220 RiLoRiLaR1LoR1LoR;  RiLoRyLoRy, isotropic Kepler system as well. Discussion on symbolic dy-
01010 R1RoR1R,RIR,R1RoR;  RiRoR1RoRYS, namics and bifurcation behavior of these systems will be
20° D2R$B,D3R?B, D3R1By, presented elsewhere.
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Note that the first two orbits which have the same topologytional Natural Science Foundation of China.
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