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Symbolic dynamics of the hyperbolic potential
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~Received 15 May 1997!

An appropriate Poincare´ surface of section without referring to bounce events is introduced for thex2y2

potential. By means of the map on the annulus and the lifted space the symbolic dynamics of the system is
constructed. Symmetries are used to reduce the number of symbols.@S1063-651X~97!13810-7#

PACS number~s!: 05.45.1b, 03.20.1i
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By the hyperbolic potential system we mean the Ham
tonian @1#

H5
1

2
~px

21py
21x2y2!, ~1!

which appears in the long-wavelength limit of SU~2! Yang-
Mills theory @2#. After regularization by conversion to th
semiparabolic coordinates@3# a hydrogen atom in a magnet
field or a collinear helium atom can be described by sim
Hamiltonians@4,5#. Being invariant under the groupC4v , the
Hamiltonian~1! possesses rotational and reflectional symm
tries, and is similar to the symmetric four disk billiard. Th
three-letter alphabet$0,1,2% coding for billiard orbits is well
known @1,4#. Based on bounce events in the symmetric fo
disk billiard, code 2 is assigned to a diagonal bounce~i.e., a
scattering from a disk to the disk diagonal to it!, code 1 to a
nondiagonal bounce of an equal sense with its last n
diagonal bounce, and code 0 to a nondiagonal bounce o
opposite sense. If a correspondence between orbits of a
liard and those of the hyperbolic potential exists, we m
code orbits of the hyperbolic potential according to bounc
However, bounces are not always well defined for a s
potential likex2y2, and no Poincare´ surface of section de
fined according to bounces is available. In this paper we s
introduce a Poincare´ section appropriate for the hyperbol
potential and describe its symbolic dynamics.

The rotational symmetry can be easily described fo
map on the annulus. Consider the contour shown in Fig
which starts at the positive infinity of thex axis and goes
along bothx and y axes in the counterclockwise directio
We may convert the contour into a circle with a circumfe
ence of 8. Each straight segment of the contour then co
sponds to a nonoverlapping arc of length 1 on the circle. T
specific form of the transformation from the contour to
circle is not essential to our discussion. The transforma
we use is defined as follows. Denote bys the arc length on
the circle measured from the point (s50) corresponding to
the point (x,y)5(1`,01) on the contour. The transforma
tions for the eight straight segments of the contour in
counterclockwise order are 1/(11x), 221/(11y),
211/(11y), 421/(12x), 411/(12x), 621/(12y),
611/(12y), and 821/(11x).

Imagining that thex and y axes would be of a finite
width, we may define the inside of the contour. By record
the nonvanishing coordinate and the tangent componentv of
the momentum at crossing points where an orbit enters
561063-651X/97/56~6!/6317~4!/$10.00
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contour, the Poincare´ map can be obtained. On the corr
sponding circle contour, the map represents a map on
annulus. Let us define the fundamental domain~FD! of the
annulus to be the area ofsP@0,8) andvP@21,1#. For a map
on the annulus it is useful to consider its lift@6–9#. In the
lifted space on which the lift map is defined the image of t
FD is partly sketched in Fig. 2 where the FD is the rectan
consisting of the leftmost eight strips marked with the nu
bers 0 to 7. In the figure we draw only the images of strip
and 2. Two zones marked with 1 and 18 of strip 1 are
mapped to zone 1 of strip13 and zone 18 of strip 12,
respectively. The notation representing the image of strip
analogous. The rotational symmetry of the Hamiltonian~1!
corresponds to the translational symmetry in the lifted spa
For example, the image of strip 0 is in strips 6 and 7, and
be obtained from the image of strip 2~in the strips10 and
11) by shifting to the left by two strips.

For the full FD, the rotation number of orbits is between
and 2. Taking the rotational symmetry into account, we m
consider only the reduced domain~RD! consisting of strips 1
and 2. When the RD is regarded as the annulus, from Fi
the integral part of rotation numbers is 3, 4, or 5 for zone

FIG. 1. Contour for the Poincare´ surface of section.
6317 © 1997 The American Physical Society
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FIG. 2. Sketch showing the image of the fundamental domain.
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the joint zone 18 and 28 or zone 1, respectively. The RD is
correspondingly divided into three regions according to t
rotation number. In the RD, tangencies between stable
unstable manifolds can be easily seen. Among them,
prominent ones are in zones 1 and 2. At a given point
stable and unstable directions or tangent directions of ma
folds can be determined with the procedure suggested
Greene@10#, and then tangent points found. Two lines co
necting such tangent points, which go approximately alo
nearby stable manifolds, give a further partition of the R
The final partition of the RD into five regions is sketched
Fig. 3 where these regions are marked by •L0, •R0, •R1, •R2,
and •L2. In the figure the two boundaries of the RD a
marked with •D0 and •D2, the two lines of tangencies by

FIG. 3. Sketch showing the partition of the reduced domain. W
have used an equivalent range@21.0,1.0) fors instead of@1.0,3.0).
e
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•C0 and •C2, and two other lines separating different rot
tion numbers, being the preimage of •D0 or •D2, are marked
by •B0 and •B2. By means of this partition we may code a
orbit with a doubly infinite sequence

•••s21•s0s1•••,

where • indicates the present.
The ordering is essential to the construction of symbo

dynamics. We may accept the natural order of the lift
space to write

•L0,•R0,•R1,•R2,•L2 . ~2!

From the image of the RD shown in Fig. 2 we see an op
site arrangement of the image zones in the lifted space
more precise description of ordering is given by the order
of stable manifold foliations on a transversal unstable fo
tion. It is numerically verified that under the forward map t
ordering is reversed in the regions •R0, •R1, and •R2, but
preserved in •L0 and •L2. We may define the parity of a
finite string by the oddness of the total number of the lett
R0, R1, and R2 contained in the string. Any odd leadin
string will then reverse the ordering~2!.

The image of the partition shown in Fig. 3 gives the pa
tition according to preimages. The study of this partition u
der the backward map provides the information about
ordering of backward sequences. Similarly, we have

L0•,R0•,R1•,R2•,L2•, ~3!

and an odd leading string also reverses this ordering. H
the ordering rules for forward and for backward sequen
coincide. However, generally they are different. The stadi
billiard is an example@9#.

Based on the ordering rules, metric representations
both forward and backward sequences may be introduce
construct the symbolic plane@11#. Every forward or back-
ward sequence then corresponds to a number between 0
1. An orbit point corresponds to a point (a,b) in the unit
square, wherea andb are associated with the forward an
backward sequences, respectively. In the symbolic plane
bidden sequences are pruned by the so-called primary p

e



ne

ar
in

tr
ol
th
a

o
e

the
ch

ee-

he

he
0

ly

s
to

ely

s
to
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ing front which consists of the points in the symbolic pla
representing all the points on the partition lines •D0, •D2,
•C0, and •C2. We show the symbolic plane of thex2y2 po-
tential in Fig. 4 where 6 000 points of several real orbits
drawn. The corresponding primary pruning front is shown
Fig. 5.

So far we have not considered the reflectional symme
In fact, the second and fourth quadrants in the symb
plane are forbidden by the symmetry. In the lifted space
symmetry corresponds to the invariance of the RD underp
rotation around the center~or the reflection with respect to
the center!. From Fig. 2 it is seen that the image of zone 1
strip 1 is in strip13, hence still in 1 after wrapping. On th

FIG. 4. Symbolic plane of the reduced domain. Approximat
6 000 real orbit points are drawn.

FIG. 5. Primary pruning front of the reduced domain. It form
the border of the region within which orbit points are restricted
fall.
e

y.
ic
is

f

contrary, the image 18 of strip 1 is in strip 2. However, thep
rotation can put the image back into strip 1. So, using
reflectional symmetry, we may focus only on strip 1, whi
may be regarded as the minimal domain~MD!. In this way
the five-letter symbolic dynamics is reduced to the thr
letter one, and thep rotation changes the parity ofR1. More
specifically speaking, we have the following ordering for t
minimal domain:

•L0,•R0,•R1 , L0•,R0•,R1•, ~4!

and onlyR0 in a leading string reverses the ordering. T
symbolic plane of the MD is shown in Fig. 6 where 6 00

FIG. 6. Symbolic plane of the minimal domain. Approximate
6 000 real orbit points are drawn.

FIG. 7. Primary pruning front of the minimal domain. It form
the border of the region within which orbit points are restricted
fall.



in
g

p
in

in

e

g

uct

g
the

ifold
-

nly
to

-
y-
be

e-
a-

6320 56WEI-MOU ZHENG
points of several real orbits are drawn. The correspond
primary pruning front is shown in Fig. 7 where the prunin
front of •D0 is roughly diagonal, while that of •C0 is almost
vertical. The latter encloses a forbidden zone near the to
the symbolic plane, which is responsible for many interest
bifurcations, e.g., the one mentioned in Ref.@1# associated
with the orbits (210)` and (1000)` in their codes @or
(L0R1

3)` and (R0R1
3)` in our codes#. Finally, we give ex-

amples of different codings for some orbits shown
Ref. @1#:

$0,1,2%-code five-letter code three-letter cod
2205 R1L0R1L2R1

6L2R1L0R1
5 R1L0R1L0R1

5,
010105 R1R0R1R2R1

6R2R1R0R1
5 R1R0R1R0R1

5,
205 D0

2R1
4B0D2

2R1
4B2 D0

2R1
4B0,

1105 R0
2R1

5R2
2R1

5 R0
2R1

5,
1106 R0

2R1
6 R0

2R1
6.

Note that the first two orbits which have the same topolo
n-
g

in
g

y

may be distiguished in our code since the first orbit hasL0

andL2 instead ofR0 andR2, respectively.
In the above we have given a natural way to constr

symbolic dynamics for thex2y2 potential. Our choice of the
Poincare´ section avoids any ambiguity in identifyin
bounces. A lift of the phase space helps us to understand
dynamics. Tangencies between stable and unstable man
foliations play an important role in the construction of sym
bolic dynamics. Our discussions are specifically made o
for the x2y2 potential, but the arguments may be applied
other systems such as then-disk pinballs, a hydrogen atom in
a magnetic field@12#, a collinear helium atom, and the an
isotropic Kepler system as well. Discussion on symbolic d
namics and bifurcation behavior of these systems will
presented elsewhere.
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